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Abstract

Blazars are active galactic nuclei with relativistic jets pointed
almost directly at Earth. Blazars are characterized by strong,
apparently stochastic flux variability at virtually all observed
wavelengths and timescales, from minutes to years, the phys-
ical origin of which is still poorly understood. In the high-
energy gamma-ray band, the Large Area Telescope aboard
the Fermi space telescope (Fermi-LAT) has conducted reg-
ular monitoring of thousands of blazars since 2008. Deep
learning can help uncover structure in gamma-ray blazars’
complex variability patterns that traditional methods based on
parametric statistical modeling or manual feature engineering
may miss. In this work, we propose using a self-supervised
Transformer encoder architecture to construct an effective
representation of blazar gamma-ray variability. Measurement
errors, upper limits, and missing data are accommodated us-
ing learned encodings. The model predicts a set of quantiles
for the flux probability distribution at each time step, an ar-
chitecture naturally suited for describing data generated by a
stochastic process. As a proof of concept for how the model
output can be analyzed to extract scientifically relevant in-
formation, a preliminary search for weekly-timescale time-
reversal asymmetry in gamma-ray blazar light curves was
conducted, finding no significant evidence for asymmetry.

Introduction
Blazars are the most extreme class of active galactic nuclei
(AGN), energetic phenomena powered by accretion onto su-
permassive black holes in the centers of a few percent of
galaxies. A fraction of AGN host relativistic jets that ac-
celerate particles close to the speed of light. AGN with jets
oriented close to the line of sight towards Earth are called
blazars (Urry and Padovani 1995). Blazars are the most lu-
minous long-lasting sources of electromagnetic radiation in
the gamma-ray sky. Blazar emission extends across the elec-
tromagnetic spectrum, including gamma rays in the high-
energy (HE; ∼0.1-100 GeV) band and even higher energies.

HE gamma-ray observations of blazars have been con-
ducted since 2008 by the Large Area Telescope on board the
Fermi Gamma-Ray Space Telescope (Fermi-LAT). Fermi-
LAT detects gamma rays from 20 MeV to above 500 GeV
using a pair-conversion technique (Atwood et al. 2009). Lo-
cated in low Earth orbit, Fermi-LAT primarily operates in
survey mode, during which it scans the entire sky every 3
hr. Among other data products, Fermi-LAT generates binned

gamma-ray flux light curves (time series) for each detected
source. The time bin duration (typically chosen between 1
day and several months) is a trade-off, with a shorter dura-
tion improving time resolution but worsening sensitivity.

Blazars can be divided into two main classes based on
their optical spectra, flat spectrum radio quasars (FSRQs)
and BL Lacertae-type objects (BL Lacs). The brightest and
most variable objects in HE gamma rays are typically FS-
RQs. Over 3000 blazars have been detected by Fermi-LAT
(Ajello et al. 2022). Of the Fermi-LAT blazars, 755 are FS-
RQs, 1379 are BL Lacs, and 1208 are of an unknown type.

The physical processes that cause gamma-ray blazar vari-
ability are poorly understood. Long-timescale (≳ 1 year)
gamma-ray variability may be connected to processes in the
accretion disk, while short-timescale (≲ 1 day) variability
may result from emission occurring in compact structures in
the jet (Rieger 2019). Some gamma-ray blazars exhibit ap-
parent trends (e.g. Valverde et al. 2020) or (quasi-)periodic
oscillations (e.g. Peñil et al. 2020; Rueda, Glicenstein, and
Brun 2022) on timescales of years.

Of particular physical and observational interest is
intermediate-timescale variability, ranging from days to
months. Most strikingly, on these timescales blazars can un-
dergo flares, or short-lived flux increases of as much as two
orders of magnitude (e.g. Adams et al. 2022). The physi-
cal origin of gamma-ray flares in blazars, or even whether
flares should be understood as a physical process distinct
from ordinary gamma-ray emission, is not known. For ex-
ample, a model of intermediate-timescale variability as the
interaction between an unresolved short-timescale burst pro-
cess and long-timescale stochastic variations can yield flares
as an emergent property (Brill 2022). An understanding of
to what extent flares are asymmetric in time is also valuable,
as their rise and decay timescales may be connected to the
timescales of the particle acceleration and cooling processes
in the emission region (e.g. Abdo et al. 2010). For these rea-
sons, a better understanding of blazar variability at interme-
diate timescales, including the shape of the flux probability
distribution and whether it changes over time, can give cru-
cial insight into physical processes.

Blazar emission typically has a power spectral density
(PSD) with a power-law shape (e.g. Abdo et al. 2010), possi-
bly with spectral breaks, indicating that it is wholly or partly
stochastic. Characteristic gamma-ray variability timescales



can be discovered through time-series modeling (e.g. Kelly,
Bechtold, and Siemiginowska 2009; Ryan et al. 2019; Brill
2022). However, variability analysis based on PSD fitting or
autoregressive modeling has several important limitations.
Model parameters, such as the shape of the flux distribution,
must be imposed. Depending on the method used, it can be
difficult to deal with missing time bins or upper limits. Meth-
ods based on second-order statistics are restricted to model-
ing time-symmetric autocorrelation. A key assumption un-
derlying many time-series models is stationarity, or time
invariance of statistical properties (possibly after filtering
out trends or periodicities). The extent to which blazar light
curves can be properly described as stationary is still under
investigation. For example, Duda and Bhatta (2021) reported
transient non-stationarity features in gamma-ray blazar light
curves. One potential form of apparent nonstationarity could
be a tendency for flaring activity to increase (or suppress)
further flux variability, manifesting in time-asymmetric con-
ditional heteroskedasticity. In this work, we explore how the
expressive power of deep neural networks can complement
traditional analysis tools and enable novel studies by surfac-
ing variability patterns in a model-independent way.

Several different approaches have been used to analyze
gamma-ray blazar variability with deep neural networks.
Some works have focused on the supervised task of clas-
sifying sources of unknown spectral type as FSRQs or BL
Lacs using variability features manually extracted from light
curves (e.g. Doert and Errando 2014; Kaur et al. 2019). In
most contexts, however, light curves are unlabeled, making
it natural to adopt an unsupervised approach capable of au-
tomatically extracting information of scientific interest for
further analysis, classification, and interpretation. Further-
more, light curves may contain rich variability patterns that
manually determined features do not adequately describe.

One possible approach, increasingly applied in optical as-
tronomy (Huertas-Company and Lanusse 2022), has used
recurrent autoencoders in a semi-supervised or anomaly de-
tection framework to search for transient events such as su-
pernovae (e.g. Villar et al. 2020, 2021) or anomalous vari-
ability behavior in AGN (Sánchez-Sáez et al. 2021). Using
a recurrent autoencoder, Tachibana et al. (2020) found ev-
idence of temporal asymmetry in the optical variability of
quasars, though such an asymmetry could have been pro-
duced by a selection bias induced at the time of sample se-
lection (Shen and Burke 2021). Autoencoders can efficiently
represent a light curve’s overall long-term variability struc-
ture. However, because their compression objective leads
them to discard short-term fluctuations, they are less well
suited for modeling variability on shorter time scales.

Instead, we propose an approach to uncovering variability
patterns in gamma-ray light curves based on self-supervised
learning (SSL), in which some of the data points in the in-
put light curves are randomly masked, and a deep neural
network is trained to predict the missing data based on its
context. We employ a model closely based on Bidirectional
Encoder Representations from Transformers (BERT; Devlin
et al. 2018), widely used in natural language processing.
BERT is built around the Transformer architecture (Vaswani
et al. 2017), which employs a self-attention mechanism to

efficiently model complex long-term dependencies in data.
In astronomy, SSL using Transformers has been used to re-
move noise and outliers from optical light curves (Morvan
et al. 2022) and to perform pre-training for classifying the
light curves of variable stars (Donoso-Oliva et al. 2022).

In this work, we have applied SSL to extract variability
information from gamma-ray light curves of blazars. In or-
der to naturally represent the variability structure of stochas-
tic light curves, we introduce a training objective in which
the network predicts a probability distribution, rather than
a scalar value, for each missing data point, represented non-
parametrically as a set of quantiles. After training, the result-
ing probability distributions can be analyzed to obtain quan-
tities of scientific interest. As a proof of concept, we applied
SSL to search for weekly-timescale time-reversal asymme-
try in gamma-ray blazar light curves.

Data
For our gamma-ray dataset, we used the publicly available
light curves from the Fermi-LAT Light Curve Repository1

(LCR; Fermi Large Area Telescope Collaboration 2021).
The LCR consists of light curves for 1525 sources estimated
to have a less than 1% chance of being a steady source over
10 time intervals in the source catalog of the first 10 years of
Fermi-LAT observations (Ballet et al. 2020). Of these, about
93% are blazars.

The LCR provides light curves with time bin sizes of 3
days, 7 days, and 30 days. The light curves are generated
by a maximum likelihood analysis. For each time bin, the
significance is estimated by a likelihood test statistic (TS;
Mattox et al. 1996). For time bins with a significant detec-
tion, the flux F and 1σ errors σF are provided; otherwise a
95% photon flux upper limit UL is reported. Time bins may
be missing entirely if insufficient data were collected during
a time bin or if the analysis otherwise failed to converge. We
downloaded the 7 day photon flux light curves correspond-
ing to a fixed spectral index for all sources for the time in-
terval from August 5, 2008 through March 14, 2022, for a
maximum of 710 time bins per source.

Guided by the LCR usage notes2, we applied a number
of quality cuts to the data. Potentially non-convergent bins
were removed by excluding bins with a nonzero return code;
TS ≤ 0; UL < 0; (F/σF )

2/TS ≥ 1; or (F/σF )
2/TS ≤

0.1. Upper limits were selected for all time bins with TS <
4, and low-quality data points with F ≤ σF were excluded.

On March 16, 2018, the Fermi spacecraft experienced an
anomaly in its drive system, after which it adopted a mod-
ified orbital profile3. This resulted in occasional periods of
low exposure for some sources, leading to erroneous pho-
ton flux estimates. To remove any data points potentially af-
fected by this anomaly, for each source i, data points with

1https://fermi.gsfc.nasa.gov/ssc/data/access/lat/
LightCurveRepository/

2https://fermi.gsfc.nasa.gov/ssc/data/access/lat/
LightCurveRepository/about.html

3https://fermi.gsfc.nasa.gov/ssc/observations/types/
post anomaly/



σF /µi < 1.5 and upper limits with UL/2µi < 1.5 were
excluded, where µi is that source’s mean photon flux.

Finally, any source with fewer than 100 flux data points;
fewer than 300 combined data points and upper limits; or
not classified as an FSRQ, BL Lac, or blazar candidate of un-
known type was excluded, leaving 689 sources. Fig. 1 shows
the light curves after all cuts of the most and least variable
sources in the final dataset, as determined by the 4FGL-DR2
variability index (Ballet et al. 2020). Each time bin has either
an associated flux F and error σF , or an upper limit UL, all
in units of photons cm−2 s−1, as well as an associated time
index 0 ≤ t < 710.
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Figure 1: Light curves of the most (top) and least (bottom)
variable sources in the LCR dataset after all cuts. Upper lim-
its are indicated by orange triangles.

In order to develop and validate the network, we also cre-
ated a simulated dataset intended to roughly emulate the
general statistical features of the LCR dataset. 1378 light
curves were simulated, of which 689 were used for train-
ing and 689 were reserved for validation. Each light curve
consisted of 710 time steps and was generated following a
first-order autoregressive (AR(1)) process,

yt+1 = ϕyt + ϵt, (1)

where ϵt ∼ N (0, σ). The light curves were exponentiated
to obtain a lognormal flux distribution and scaled by a ran-
dom normalization parameter µN . The AR(1) parameters of

each light curve were randomly selected following the distri-
bution parameters in Table 1. Simulated measurement errors
were applied to the light curves and time bins were randomly
removed using a flux/error correspondence and missing-bin
probability empirically estimated from the LCR data. Time
bins with F < 2σF were replaced with upper limits such
that UL = max(2σF +F, 2σF ). A comparison of some sta-
tistical properties of the real and simulated datasets is shown
in Fig. 2.

Param. Distribution µdist σdist Min Max
ϕ Trunc. Norm. 0.70 0.30 0 0.975
σ Trunc. Norm. 0.45 0.05 0 -
µN Lognormal -17.4 0.8 - -

Table 1: Distributions of parameters used to generate the
simulated light curves.

Methodology
The core of our model consisted of a BERT-style Trans-
former encoder network with L = 4, H = 64, and A = 4,
with L the number of layers, H the hidden size, and A the
number of self-attention heads. The feedforward dimension
is set to 4H and dropout was used with probability 0.1.
Adam was used to train the model with a learning rate of
1×10−3, β1 = 0.9, and β2 = 0.999 (Kingma and Ba 2014).

We applied several preprocessing steps to transform the
data into an input format suitable for the network. First, for
each light curve, a segment of 101 time bins was extracted,
with the start point chosen randomly. The time indices were
shifted to make the index of the central data point 0. Time
steps were randomly selected for masking with 20% proba-
bility. Of those selected, a mask was actually applied with
90% probability, otherwise, the data point was unaltered.
The natural logarithm was applied to the flux points, 1σ flux
lower and upper bounds, and flux upper limits. The mean
of the unmasked flux points in the segment was subtracted.
To create the input vector for the network, the time indices
and flux values were converted to vectors of length 32 using
fixed trigonometric encodings (Vaswani et al. 2017). Since
the flux values and time index both used fixed encodings,
the vectors were concatenated rather than summed, yield-
ing input vectors of length 128. For upper limits, the flux
upper and lower limits were replaced by a single learned
upper limit encoding, while for masked time steps all three
flux values were replaced by a single learned mask encoding
(superseding any upper limit encoding). This process was re-
peated in batches, with a batch size of 64.

To generate a non-parametric probability distribution for
the flux at each time step, the output encoding was fed
through a Quantile Head, illustrated in Fig. 3. Three inde-
pendent stacks of fully-connected networks computed the
median; quantiles less than 0.5; and quantiles greater than
0.5, respectively. The Quantile Head efficiently prevents
quantile crossing, i.e., non-monotonicity of the estimated
quantiles, by applying a softplus activation followed by a
cumulative sum to the estimated quantile vectors. The vec-
tor for quantiles less than 0.5 was flipped and negated, the
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Figure 2: A comparison of statistical properties of the real and simulated datasets, showing, from left to right, the mean photon
flux, the standard deviation of the natural logarithm of the flux, and the lag-1 autocorrelation function of the natural logarithm
of the flux. Upper limits were excluded from all calculations. No adjustments were made to account for missing time bins.

median added to the other quantiles, and all of the quan-
tiles finally concatenated. We used the set of 19 quantiles
for probabilities 0.05 to 0.95, in increments of 0.05.
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Figure 3: Diagram of the Quantile Head applied to the output
embedding at each time step.

The SSL objective was the quantile score or pinball loss
function,

L = 2
∑
p

max(−p(qp − y), (1− p)(qp − y)), (2)

where qp is the quantile corresponding to probability p ∈
(0, 1) and y is the measured value of log(F ). For p = 0.5,
the quantile score reduces to the absolute loss. Only masked
flux points were included in the loss; any masked upper lim-
its were ignored.

Results
The network was first trained on the simulated dataset
for 1000 epochs, monitoring the validation loss throughout
training to confirm that it remained consistent with the train-
ing loss. The network was then retrained from scratch on the
real LCR dataset using the same procedure. Each model was
subsequently used to generate predictions on its respective
corresponding dataset only.

An example of the output of the model trained on real
data is shown in Fig 4. For each data point of each source,
predicted quantiles were generated by using as input the in-
terval of length 101 centered on that data point, replacing the
data for that point but no others with a mask encoding. No
quantiles were generated for the first and last 50 data points.
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Figure 4: Example of quantiles generated by the trained
model, for a portion of the light curve of the most variable
LCR source (Fig. 1). Gray triangles indicate upper limits.

The trained models were then used to perform a search
for time-reversal asymmetry in flux variability on weekly



timescales. We considered the simple case in which the dis-
tribution of log(F ) is assumed to be normal with a standard
deviation that may vary at different time steps. To do so,
a time-reversed set of predicted quantiles was generated as
above, except that the time indices within each interval were
reversed. The distributions were centered at 0 by subtracting
their respective median. The standard deviation of log(F )
was estimated from each set of forward and time-reversed
quantiles as the mean of their values divided by the respec-
tive values for a normal distribution. For each data point, the
relative difference ∆rel between the forward standard devi-
ation σfor and time-reversed one σrev was defined as

∆rel = 2
σfor − σrev

σfor + σrev
. (3)

The distributions of the mean relative difference µ∆rel
for

each source in the simulated and real datasets are shown in
Fig. 5. The average value of µ∆rel

for the simulated dataset
was −0.002 ± 0.003 and the average for the real dataset
was 0.002± 0.004. No significant deviation from 0 was ob-
served for either dataset. By construction, the mean relative
difference for the simulated dataset should be 0 for every
source. One possible explanation for a negative relative dif-
ference could be the network overfitting on the time orien-
tation it was trained on, causing it to be slightly more con-
fident in the forward direction. For the real data, we there-
fore adopted 0.002 as an additional systematic uncertainty
on the mean relative difference. Incorporating this system-
atic uncertainty, a preliminary upper bound was placed on
the time asymmetry of the amplitude of weekly variability
of |µ∆rel

| ≲ 0.01 at the 95% confidence level.
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Figure 5: Distributions of the mean relative difference in
standard deviation of log(F ) for the simulated and real
datasets.

Discussion
In this work, we investigated self-supervised learning, a po-
tentially powerful new tool for astrophysical data analysis.
As a proof of concept, we used predicted flux distributions
generated by a self-supervised Transformer encoder network
to perform a novel search for weekly-timescale time-reversal
asymmetry in gamma-ray blazar light curves. No significant
time asymmetry in the amplitude of the flux distribution was

found, suggesting that the amplitude of gamma-ray variabil-
ity in blazars does not itself vary on weekly timescales. This
finding is relevant for many statistical methods commonly
used in high-energy astrophysics that assume time-reversal
symmetry, such as autoregressive modeling.

More generally, the self-supervised framework has a num-
ber of advantages relative to standard time series analysis
methods used with astrophysical data. Upper limits, mea-
surement errors, and missing data can be naturally accom-
modated using learned encodings. The neural network out-
put is independent of any statistical model or parameteri-
zation and can be used for a variety of tasks, making it an
unbiased basis for comparison between models or for ex-
ploratory searches. In particular, although we did not rely
on this property in this work, the Quantile Head generates
non-parametric probability distributions. It can therefore be
used as a foundation for a variety of studies, such as com-
paring different intermediate-timescale flux probability dis-
tributions. In addition, the trained network encodes knowl-
edge of and generalizes variability patterns learned from an
entire dataset, as opposed to a statistical model which must
be fit to one light curve at a time. Finally, although we have
focused exclusively on gamma-ray data in this work, the net-
work architecture presented here would naturally extend to
accommodate data from multiple wavebands at once, poten-
tially allowing novel multiwavelength variability analyses to
be conducted.

Multiple avenues exist for future studies to build on the
method discussed here. The flux distributions predicted by
the network in the present architecture mix together sev-
eral sources of variability, incorporating not only variabil-
ity due to physical processes in the blazar but also mea-
surement error; nuisance parameters such as luminosity and
redshift; and estimation error due to the finite length of the
light curves. One potential way to eliminate the variability
caused by measurement error from the predicted distribu-
tions would be to add a secondary self-supervised objec-
tive to predict the measurement error at each time step. The
predicted error distribution could then be deconvolved from
the predicted flux distribution using a Monte Carlo or other
approach. In addition, physically-motivated data augmen-
tations, such as stretch and scale transformations to mimic
the effect of changing redshift, could be applied to help the
network disentangle the effects of cosmological nuisance
parameters, as well as to enhance the effective size of the
dataset. However, because measurement error is nonlinearly
correlated with flux, among other factors, doing so would
likely require a more detailed model of the Fermi-LAT sen-
sitivity. These methods may provide an improved estimation
of the intrinsic variability, enabling more detailed studies
of the predicted flux probability distributions. Unsupervised
clustering and correlation studies using the generated output
encodings could also be performed.
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Rapposelli, E.; Razzano, M.; Reimer, A.; Reimer, O.; Re-
poseur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Ro-
driguez, A. Y.; Romani, R. W.; Roth, M.; Russell, J. J.; Ryde,
F.; Sabatini, S.; Sadrozinski, H. F. W.; Sanchez, D.; Sander,
A.; Sapozhnikov, L.; Parkinson, P. M. S.; Scargle, J. D.;
Schalk, T. L.; Scolieri, G.; Sgrò, C.; Share, G. H.; Shaw,
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Peñil, P.; Domı́nguez, A.; Buson, S.; Ajello, M.; Otero-
Santos, J.; Barrio, J. A.; Nemmen, R.; Cutini, S.; Rani, B.;
Franckowiak, A.; and Cavazzuti, E. 2020. Systematic Search
for γ-Ray Periodicity in Active Galactic Nuclei Detected by
the Fermi Large Area Telescope. The Astrophysical Journal,
896(2): 134.
Rieger, F. 2019. Gamma-Ray Astrophysics in the Time Do-
main. Galaxies, 7(1): 28.
Rueda, H.; Glicenstein, J.-F.; and Brun, F. 2022. Search for
Periodicities in High Energy AGNs with a Time Domain
Approach. The Astrophysical Journal, 934(1): 6.
Ryan, J. L.; Siemiginowska, A.; Sobolewska, M. A.; and
Grindlay, J. 2019. Characteristic Variability Timescales in
the Gamma-Ray Power Spectra of Blazars. The Astrophysi-
cal Journal, 885(1): 12.
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